Thursday, July 2, 2009
Important discoveries
Hubble has helped to resolve some long-standing problems in astronomy, as well as turning up results that have required new theories to explain them. Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of 10%, which is consistent with other more accurate measurements made since Hubble's launch using other techniques.
While Hubble helped to refine estimates of the age of the universe, it also cast doubt on theories about its future. Astronomers from the High-z Supernova Search Team and the Supernova Cosmology Project used the telescope to observe distant supernovae and uncovered evidence that, far from decelerating under the influence of gravity, the expansion of the universe may in fact be accelerating. This acceleration was later measured more accurately by other ground-based and space-based telescopes that confirmed Hubble's finding, but the cause of this acceleration is currently very poorly understood.
The high-resolution spectra and images provided by the Hubble have been especially well-suited to establishing the prevalence of black holes in the nuclei of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and work in the 1980s identified a number of good black hole candidates, it fell to work conducted with the Hubble to show that black holes are probably common to the centers of all galaxies.The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.
The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble's optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.
Other major discoveries made using Hubble data include proto-planetary disks (proplyds) in the Orion Nebula; evidence for the presence of extrasolar planets around sun-like stars;and the optical counterparts of the still-mysterious gamma ray bursts.[84] HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.
Main articles: Hubble Deep Field and Hubble Ultra Deep Field
A unique legacy of Hubble are the Hubble Deep Field and Hubble Ultra Deep Field images, which utilized Hubble's unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe.
The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope (HST) in February 2006.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment