Thursday, July 2, 2009

Design of a solution


The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak and Itek had each ground back-up mirrors for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope temporarily back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as "spectacles" to correct the spherical aberration.

The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror was −1.01324, instead of the intended −1.00230.The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

Because of the way the Hubble's instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the eight separate CCD chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

The system designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS was called the "Corrective Optics Space Telescope Axial Replacement" (COSTAR) and consisted essentially of two mirrors in the light path, one of which would be figured to correct the aberration.To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed.

By 2002 all of the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics, rendering it redundant; COSTAR was removed and returned to Earth in 2009, its space taken by the Cosmic Origins Spectrograph.

No comments:

Post a Comment