The Sun is the Solar System's star, and far and away its chief component. Its large mass gives it an interior density high enough to sustain nuclear fusion, which releases enormous amounts of energy, mostly radiated into space as electromagnetic radiation, peaking in the 400–to–700 nm band we call visible light.
The Sun is classified as a moderately large yellow dwarf, but this name is misleading as, compared to majority of stars in our galaxy, the Sun is rather large and bright.Stars are classified by the Hertzsprung-Russell diagram, a graph which plots the brightness of stars against their surface temperatures. Generally, hotter stars are brighter. Stars following this pattern are said to be on the main sequence, and the Sun lies right in the middle of it. However, stars brighter and hotter than the Sun are rare, while substantially dimmer and cooler stars, known as red dwarfs, are common, making up 85 percent of the stars in the galaxy.
The Sun is a population I star; it was born in the later stages of the universe's evolution, and thus contains more elements heavier than hydrogen and helium than older population II stars.Elements heavier than hydrogen and helium were formed in the cores of ancient and exploding stars, so the first generation of stars had to die before the universe could be enriched with these atoms. The oldest stars contain few metals, while stars born later have more. This high metallicity is thought to have been crucial to the Sun's developing a planetary system, because planets form from accretion of metals.
No comments:
Post a Comment