Thursday, July 2, 2009

Hubble Space Telescope


The Hubble Space Telescope (HST) is a space telescope that was carried into orbit by the space shuttle in April 1990. It is named after the American astronomer Edwin Hubble. Although not the first space telescope, the Hubble is one of the largest and most versatile, and is well-known as both a vital research tool and a public relations boon for astronomy. The HST is a collaboration between NASA and the European Space Agency, and is one of NASA's Great Observatories, along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope.

Space telescopes were proposed as early as 1923. The Hubble was funded in the 1970s, with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the Challenger disaster. When finally launched in 1990, scientists found that the main mirror had been ground incorrectly, severely compromising the telescope's capabilities. However, after a servicing mission in 1993, the telescope was restored to its intended quality. Hubble's orbit outside the distortion of Earth's atmosphere allows it to take extremely sharp images with almost no background light. Hubble's Ultra Deep Field image, for instance, is the most detailed visible-light image ever made of the universe's most distant objects. Many Hubble observations have led to breakthroughs in astrophysics, such as accurately determining the rate of expansion of the universe.

The Hubble is the only telescope ever designed to be serviced in space by astronauts. There have been five servicing missions, the last occurring in May 2009. Servicing Mission 1 took place in December 1993 when Hubble's imaging flaw was corrected. Servicing missions 2, 3A, and 3B repaired various sub-systems and replaced many of the observing instruments with more modern and capable versions. However, following the 2003 Space Shuttle Columbia accident, the fifth servicing mission was canceled on safety grounds. After spirited public discussion, NASA reconsidered this decision, and administrator Mike Griffin approved one final Hubble servicing mission. STS-125 was launched in May 2009, and installed two new instruments and made numerous repairs. Assuming testing and calibration of the new equipment goes well, the Hubble should resume routine operation in September 2009.

The latest servicing should allow the telescope to function until at least 2014, when its successor, the James Webb Space Telescope (JWST), is due to be launched. The JWST will be far superior to Hubble for many astronomical research programs, but will only observe in infrared, so it will complement (not replace) Hubble's ability to observe in the visible and ultraviolet parts of the spectrum.

Proposals and precursors


In 1923, German scientist Hermann Oberth, considered—along with Robert Goddard and Konstantin Tsiolkovsky—one of the three fathers of modern rocketry, published Die Rakete zu den Planetenräumen ("The Rocket into Planetary Space"), which mentioned how a telescope could be propelled into Earth orbit by a rocket.
 
The history of the Hubble Space Telescope can be traced back as far as 1946, when the astronomer Lyman Spitzer wrote the paper "Astronomical advantages of an extraterrestrial observatory", in it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle and is known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for a telescope with a mirror 2.5 m in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

Spitzer devoted much of his career to pushing for a space telescope to be developed. In 1962 a report by the United States National Academy of Sciences recommended the development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining the scientific objectives for a large space telescope.

Space-based astronomy had begun on a very small scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946,and NASA launched the Orbiting Solar Observatory to obtain UV, X-ray, and gamma-ray spectra in 1962. An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 National Aeronautics and Space Administration (NASA) launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1's battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy, and 1968 saw the development by NASA of firm plans for a space-based reflecting telescope with a mirror 3 m in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for manned maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable space shuttle indicated that the technology to allow this was soon to become available.

Construction and engineering


Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. Marshall Space Flight Center (MSFC) was given responsibility for the design, development, and construction of the telescope, while the Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct the spacecraft in which the telescope would be housed.

Optical Telescope Assembly (OTA)


Optically, the Hubble is a Cassegrain reflector of Ritchey-Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations into the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore its mirror needed to be polished to an accuracy of 10 nanometres, or about 1/65 of the wavelength of red light.

Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape.However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques.(The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other's work, which would have almost certainly caught the polishing error that later caused such problems. The Kodak mirror is now on permanent display at the Smithsonian Institution. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror's weight to a minimum it consisted of inch-thick top and bottom plates sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror on both sides with 138 rods that exerted varying amounts of force. This ensured that the mirror's final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer's managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984.The mirror was completed by the end of 1981; it was washed using 2,400 gallons of hot, deionized water and then received a reflective coating of aluminium 65 nm-thick and a protective coating of magnesium fluoride 25 nm-thick.
 
Doubts continued to be expressed about Perkin-Elmer's competence on a project of this importance as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as "unsettled and changing daily", NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer's schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until first March and then September 1986. By this time the total project budget had risen to US$1.175 billion.

Spacecraft systems


The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to adequately withstand frequent passages from direct sunlight into the darkness of Earth's shadow, which would generate major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable, and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned.Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed's clean room would later be expressed in the vacuum of space; the telescope's instruments would be covered in ice. To reduce that risk, a nitrogen gas purge was performed prior to launching the telescope into space.

While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said that Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

Ground support


The Space Telescope Science Institute (STScI) is responsible for the scientific operation of the telescope and delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy (AURA) and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 33 US universities and 7 international affiliates that make up the AURA consortium. STScI was established in 1983 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function "in-house", but scientists wanted it to be based in an academic establishment.The Space Telescope European Coordinating Facility (ST-ECF), established at Garching bei München near Munich in 1984, provides similar support for European astronomers.

One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is situated in a low-Earth orbit so that it can be reached by the space shuttle for servicing missions, but this means that most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, which is specified to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance is to keep bright light out of the FGSs and to keep scattered light from entering the instruments. If the FGSs are turned off, however, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90 degrees to the plane of Hubble's orbit, in which targets are not occulted for long periods. Due to the precession of the orbit, the location of the CVZ moves slowly over a period of eight weeks. Because the limb of the Earth is always within about 30° of regions within the CVZ, the brightness of scattered earthshine may be elevated for long periods during CVZ observations.

Because Hubble orbits in the upper atmosphere, its orbit changes over time in a way that is not accurately predictable. The density of the upper atmosphere varies according to many factors, and this means that Hubble's predicted position for six weeks' time could be in error by up to 4,000 km. Observation schedules are typically finalized only a few days in advance, as a longer lead time would mean there was a chance that the target would be unobservable by the time it was due to be observed.

Engineering support for the Hubble is provided by NASA and contractor personnel at the Goddard Space Flight Center in Greenbelt, Maryland, 48 km south of the STScI. Hubble's operation is monitored 24 hours per day by four teams of flight controllers who make up Hubble's Flight Operations Team.

Flawed mirror


Within weeks of the launch of the telescope, the images returned showed that there was a serious problem with the optical system. Although the first images appeared to be sharper than ground-based images, the telescope failed to achieve a final sharp focus, and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function concentrated within a circle 0.1 arcsec in diameter as had been specified in the design criteria.The detailed performance is shown in graphs from STScI illustrating the mis-figured PSFs compared to post-correction and ground based PSFs.

Analysis of the flawed images showed that the cause of the problem was that the primary mirror had been ground to the wrong shape. Although it was probably the most precisely figured mirror ever made, with variations from the prescribed curve of no more than 1/65 of the wavelength of visible light, it was too flat at the edges. The mirror was barely 2.2 micrometres out from the required shape, but the difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy was largely unaffected. However, the loss of light to the large, out of focus halo severely reduced the usefulness of the telescope for faint objects or high contrast imaging. This meant that nearly all of the cosmological programs were essentially impossible since they required observation of exceptionally faint objects.NASA and the telescope became the butt of many jokes, and the project was popularly regarded as a white elephant. (For instance, in the movie The Naked Gun 2½: The Smell of Fear, the Hubble was pictured with the Titanic, the Hindenburg, and the Edsel). Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations. The error was well characterized and stable, enabling astronomers to optimize the results obtained using sophisticated image processing techniques such as deconvolution.